sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(800)
sage: chi = H[297]
pari: [g,chi] = znchar(Mod(297,800))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 400 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 20 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 800.bk |
Orbit index | = | 37 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{800}(137,\cdot)\) \(\chi_{800}(153,\cdot)\) \(\chi_{800}(297,\cdot)\) \(\chi_{800}(313,\cdot)\) \(\chi_{800}(473,\cdot)\) \(\chi_{800}(617,\cdot)\) \(\chi_{800}(633,\cdot)\) \(\chi_{800}(777,\cdot)\)
Inducing primitive character
Values on generators
\((351,101,577)\) → \((1,-i,e\left(\frac{17}{20}\right))\)
Values
-1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
\(-1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(-i\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{20})\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{800}(297,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(297,r) e\left(\frac{r}{400}\right) = 39.9950652993+0.6282926925i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{800}(297,\cdot),\chi_{800}(1,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(297,r) \chi_{800}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{800}(297,·))
= \sum_{r \in \Z/800\Z}
\chi_{800}(297,r) e\left(\frac{1 r + 2 r^{-1}}{800}\right)
= 0.0 \)