# Properties

 Conductor 800 Order 40 Real no Primitive yes Minimal yes Parity odd Orbit label 800.cc

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(800)

sage: chi = H[237]

pari: [g,chi] = znchar(Mod(237,800))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 800 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 40 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = yes Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = odd Orbit label = 800.cc Orbit index = 55

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(351,101,577)$$ → $$(1,e\left(\frac{7}{8}\right),e\left(\frac{9}{20}\right))$$

## Values

 -1 1 3 7 9 11 13 17 19 21 23 27 $$-1$$ $$1$$ $$e\left(\frac{31}{40}\right)$$ $$1$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{23}{40}\right)$$ $$e\left(\frac{27}{40}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{9}{40}\right)$$ $$e\left(\frac{31}{40}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{13}{40}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{40})$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 800 }(237,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{800}(237,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(237,r) e\left(\frac{r}{400}\right) = -0.0$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)

$$J(\chi_{ 800 }(237,·),\chi_{ 800 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{800}(237,\cdot),\chi_{800}(1,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(237,r) \chi_{800}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)

$$K(a,b,\chi_{ 800 }(237,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{800}(237,·)) = \sum_{r \in \Z/800\Z} \chi_{800}(237,r) e\left(\frac{1 r + 2 r^{-1}}{800}\right) = -7.7758925689+-21.0774791014i$$