Properties

Conductor 800
Order 40
Real No
Primitive Yes
Parity Odd
Orbit Label 800.bz

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(800)
sage: chi = H[19]
pari: [g,chi] = znchar(Mod(19,800))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 800
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 40
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = Yes
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 800.bz
Orbit index = 52

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{800}(19,\cdot)\) \(\chi_{800}(59,\cdot)\) \(\chi_{800}(139,\cdot)\) \(\chi_{800}(179,\cdot)\) \(\chi_{800}(219,\cdot)\) \(\chi_{800}(259,\cdot)\) \(\chi_{800}(339,\cdot)\) \(\chi_{800}(379,\cdot)\) \(\chi_{800}(419,\cdot)\) \(\chi_{800}(459,\cdot)\) \(\chi_{800}(539,\cdot)\) \(\chi_{800}(579,\cdot)\) \(\chi_{800}(619,\cdot)\) \(\chi_{800}(659,\cdot)\) \(\chi_{800}(739,\cdot)\) \(\chi_{800}(779,\cdot)\)

Values on generators

\((351,101,577)\) → \((-1,e\left(\frac{7}{8}\right),e\left(\frac{9}{10}\right))\)

Values

-1137911131719212327
\(-1\)\(1\)\(e\left(\frac{17}{40}\right)\)\(-i\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{11}{40}\right)\)\(e\left(\frac{9}{40}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{7}{40}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{11}{40}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{40})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 800 }(19,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{800}(19,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(19,r) e\left(\frac{r}{400}\right) = 0.0 \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 800 }(19,·),\chi_{ 800 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{800}(19,\cdot),\chi_{800}(1,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(19,r) \chi_{800}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 800 }(19,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{800}(19,·)) = \sum_{r \in \Z/800\Z} \chi_{800}(19,r) e\left(\frac{1 r + 2 r^{-1}}{800}\right) = 0.0 \)