Properties

Conductor 200
Order 10
Real No
Primitive No
Parity Odd
Orbit Label 800.bd

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(800)
sage: chi = H[111]
pari: [g,chi] = znchar(Mod(111,800))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 200
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 10
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Odd
Orbit label = 800.bd
Orbit index = 30

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{800}(111,\cdot)\) \(\chi_{800}(271,\cdot)\) \(\chi_{800}(431,\cdot)\) \(\chi_{800}(591,\cdot)\)

Inducing primitive character

\(\chi_{200}(11,\cdot)\)

Values on generators

\((351,101,577)\) → \((-1,-1,e\left(\frac{4}{5}\right))\)

Values

-1137911131719212327
\(-1\)\(1\)\(e\left(\frac{3}{5}\right)\)\(-1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{4}{5}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{5})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\( \tau_{ a }( \chi_{ 800 }(111,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{800}(111,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(111,r) e\left(\frac{r}{400}\right) = 0.0 \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
\( J(\chi_{ 800 }(111,·),\chi_{ 800 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{800}(111,\cdot),\chi_{800}(1,\cdot)) = \sum_{r\in \Z/800\Z} \chi_{800}(111,r) \chi_{800}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
\(K(a,b,\chi_{ 800 }(111,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{800}(111,·)) = \sum_{r \in \Z/800\Z} \chi_{800}(111,r) e\left(\frac{1 r + 2 r^{-1}}{800}\right) = -0.0 \)