sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(79, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([73]))
pari:[g,chi] = znchar(Mod(66,79))
| Modulus: | \(79\) | |
| Conductor: | \(79\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{79}(3,\cdot)\)
\(\chi_{79}(6,\cdot)\)
\(\chi_{79}(7,\cdot)\)
\(\chi_{79}(28,\cdot)\)
\(\chi_{79}(29,\cdot)\)
\(\chi_{79}(30,\cdot)\)
\(\chi_{79}(34,\cdot)\)
\(\chi_{79}(35,\cdot)\)
\(\chi_{79}(37,\cdot)\)
\(\chi_{79}(39,\cdot)\)
\(\chi_{79}(43,\cdot)\)
\(\chi_{79}(47,\cdot)\)
\(\chi_{79}(48,\cdot)\)
\(\chi_{79}(53,\cdot)\)
\(\chi_{79}(54,\cdot)\)
\(\chi_{79}(59,\cdot)\)
\(\chi_{79}(60,\cdot)\)
\(\chi_{79}(63,\cdot)\)
\(\chi_{79}(66,\cdot)\)
\(\chi_{79}(68,\cdot)\)
\(\chi_{79}(70,\cdot)\)
\(\chi_{79}(74,\cdot)\)
\(\chi_{79}(75,\cdot)\)
\(\chi_{79}(77,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{73}{78}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 79 }(66, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{25}{39}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)