sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(784, base_ring=CyclotomicField(42))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([0,21,2]))
pari: [g,chi] = znchar(Mod(9,784))
Basic properties
Modulus: | \(784\) | |
Conductor: | \(392\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{392}(205,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 784.bl
\(\chi_{784}(9,\cdot)\) \(\chi_{784}(25,\cdot)\) \(\chi_{784}(121,\cdot)\) \(\chi_{784}(137,\cdot)\) \(\chi_{784}(233,\cdot)\) \(\chi_{784}(249,\cdot)\) \(\chi_{784}(345,\cdot)\) \(\chi_{784}(457,\cdot)\) \(\chi_{784}(473,\cdot)\) \(\chi_{784}(585,\cdot)\) \(\chi_{784}(681,\cdot)\) \(\chi_{784}(697,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((687,197,689)\) → \((1,-1,e\left(\frac{1}{21}\right))\)
Values
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
\(1\) | \(1\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.42.155718699466313184257207094263668545441599708733396657696588937331033553383727300608.1 |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{784}(9,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(9,r) e\left(\frac{r}{392}\right) = 39.5618136213+-1.6920115222i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{784}(9,\cdot),\chi_{784}(1,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(9,r) \chi_{784}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{784}(9,·))
= \sum_{r \in \Z/784\Z}
\chi_{784}(9,r) e\left(\frac{1 r + 2 r^{-1}}{784}\right)
= -0.0 \)