# Properties

 Label 784.29 Modulus $784$ Conductor $784$ Order $28$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(784, base_ring=CyclotomicField(28))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,21,12]))

pari: [g,chi] = znchar(Mod(29,784))

## Basic properties

 Modulus: $$784$$ Conductor: $$784$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$28$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 784.bh

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(687,197,689)$$ → $$(1,-i,e\left(\frac{3}{7}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$5$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$19$$ $$23$$ $$25$$ $$1$$ $$1$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$i$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{5}{14}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{28})$$ Fixed field: 28.28.5546456188088728934907543478581966794670583145101980587232591872.1

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 784 }(29,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{784}(29,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(29,r) e\left(\frac{r}{392}\right) = 0.0$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 784 }(29,·),\chi_{ 784 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{784}(29,\cdot),\chi_{784}(1,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(29,r) \chi_{784}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 784 }(29,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{784}(29,·)) = \sum_{r \in \Z/784\Z} \chi_{784}(29,r) e\left(\frac{1 r + 2 r^{-1}}{784}\right) = 31.794907919+-28.4136668847i$$