Properties

Label 784.27
Modulus $784$
Conductor $784$
Order $28$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(784, base_ring=CyclotomicField(28))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([14,7,2]))
 
pari: [g,chi] = znchar(Mod(27,784))
 

Basic properties

Modulus: \(784\)
Conductor: \(784\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 784.bk

\(\chi_{784}(27,\cdot)\) \(\chi_{784}(83,\cdot)\) \(\chi_{784}(139,\cdot)\) \(\chi_{784}(251,\cdot)\) \(\chi_{784}(307,\cdot)\) \(\chi_{784}(363,\cdot)\) \(\chi_{784}(419,\cdot)\) \(\chi_{784}(475,\cdot)\) \(\chi_{784}(531,\cdot)\) \(\chi_{784}(643,\cdot)\) \(\chi_{784}(699,\cdot)\) \(\chi_{784}(755,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((687,197,689)\) → \((-1,i,e\left(\frac{1}{14}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\(1\)\(1\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{11}{14}\right)\)\(-i\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{9}{14}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.271776353216347717810469630450516372938858574109997048774397001728.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 784 }(27,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{784}(27,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(27,r) e\left(\frac{r}{392}\right) = 0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 784 }(27,·),\chi_{ 784 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{784}(27,\cdot),\chi_{784}(1,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(27,r) \chi_{784}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 784 }(27,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{784}(27,·)) = \sum_{r \in \Z/784\Z} \chi_{784}(27,r) e\left(\frac{1 r + 2 r^{-1}}{784}\right) = 24.1889072849+-27.0673997449i \)