sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(784, base_ring=CyclotomicField(12))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([6,9,10]))
pari: [g,chi] = znchar(Mod(19,784))
Basic properties
Modulus: | \(784\) | |
Conductor: | \(112\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{112}(19,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 784.w
\(\chi_{784}(19,\cdot)\) \(\chi_{784}(227,\cdot)\) \(\chi_{784}(411,\cdot)\) \(\chi_{784}(619,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((687,197,689)\) → \((-1,-i,e\left(\frac{5}{6}\right))\)
Values
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
\(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | 12.12.2426443912768913408.1 |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{784}(19,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(19,r) e\left(\frac{r}{392}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{784}(19,\cdot),\chi_{784}(1,\cdot)) = \sum_{r\in \Z/784\Z} \chi_{784}(19,r) \chi_{784}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{784}(19,·))
= \sum_{r \in \Z/784\Z}
\chi_{784}(19,r) e\left(\frac{1 r + 2 r^{-1}}{784}\right)
= 43.8583020594+-33.6536588171i \)