Properties

Label 7803.ca
Modulus $7803$
Conductor $7803$
Order $612$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(612)) M = H._module chi = DirichletCharacter(H, M([68,243])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(4,7803)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7803\)
Conductor: \(7803\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(612\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{612})$
Fixed field: Number field defined by a degree 612 polynomial (not computed)

First 31 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{7803}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{169}{306}\right)\) \(e\left(\frac{16}{153}\right)\) \(e\left(\frac{295}{612}\right)\) \(e\left(\frac{197}{612}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{353}{612}\right)\) \(e\left(\frac{109}{153}\right)\) \(e\left(\frac{535}{612}\right)\) \(e\left(\frac{32}{153}\right)\)
\(\chi_{7803}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{306}\right)\) \(e\left(\frac{109}{153}\right)\) \(e\left(\frac{145}{612}\right)\) \(e\left(\frac{491}{612}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{121}{204}\right)\) \(e\left(\frac{215}{612}\right)\) \(e\left(\frac{121}{153}\right)\) \(e\left(\frac{97}{612}\right)\) \(e\left(\frac{65}{153}\right)\)
\(\chi_{7803}(106,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{306}\right)\) \(e\left(\frac{53}{153}\right)\) \(e\left(\frac{107}{612}\right)\) \(e\left(\frac{337}{612}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{433}{612}\right)\) \(e\left(\frac{122}{153}\right)\) \(e\left(\frac{443}{612}\right)\) \(e\left(\frac{106}{153}\right)\)
\(\chi_{7803}(115,\cdot)\) \(1\) \(1\) \(e\left(\frac{191}{306}\right)\) \(e\left(\frac{38}{153}\right)\) \(e\left(\frac{605}{612}\right)\) \(e\left(\frac{487}{612}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{125}{204}\right)\) \(e\left(\frac{475}{612}\right)\) \(e\left(\frac{125}{153}\right)\) \(e\left(\frac{257}{612}\right)\) \(e\left(\frac{76}{153}\right)\)
\(\chi_{7803}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{301}{306}\right)\) \(e\left(\frac{148}{153}\right)\) \(e\left(\frac{319}{612}\right)\) \(e\left(\frac{101}{612}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{103}{204}\right)\) \(e\left(\frac{473}{612}\right)\) \(e\left(\frac{52}{153}\right)\) \(e\left(\frac{91}{612}\right)\) \(e\left(\frac{143}{153}\right)\)
\(\chi_{7803}(166,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{306}\right)\) \(e\left(\frac{79}{153}\right)\) \(e\left(\frac{529}{612}\right)\) \(e\left(\frac{179}{612}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{25}{204}\right)\) \(e\left(\frac{299}{612}\right)\) \(e\left(\frac{127}{153}\right)\) \(e\left(\frac{337}{612}\right)\) \(e\left(\frac{5}{153}\right)\)
\(\chi_{7803}(259,\cdot)\) \(1\) \(1\) \(e\left(\frac{185}{306}\right)\) \(e\left(\frac{32}{153}\right)\) \(e\left(\frac{131}{612}\right)\) \(e\left(\frac{241}{612}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{167}{204}\right)\) \(e\left(\frac{553}{612}\right)\) \(e\left(\frac{65}{153}\right)\) \(e\left(\frac{611}{612}\right)\) \(e\left(\frac{64}{153}\right)\)
\(\chi_{7803}(268,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{306}\right)\) \(e\left(\frac{8}{153}\right)\) \(e\left(\frac{377}{612}\right)\) \(e\left(\frac{175}{612}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{29}{204}\right)\) \(e\left(\frac{559}{612}\right)\) \(e\left(\frac{131}{153}\right)\) \(e\left(\frac{497}{612}\right)\) \(e\left(\frac{16}{153}\right)\)
\(\chi_{7803}(310,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{306}\right)\) \(e\left(\frac{127}{153}\right)\) \(e\left(\frac{343}{612}\right)\) \(e\left(\frac{5}{612}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{199}{204}\right)\) \(e\left(\frac{593}{612}\right)\) \(e\left(\frac{148}{153}\right)\) \(e\left(\frac{259}{612}\right)\) \(e\left(\frac{101}{153}\right)\)
\(\chi_{7803}(319,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{306}\right)\) \(e\left(\frac{49}{153}\right)\) \(e\left(\frac{301}{612}\right)\) \(e\left(\frac{479}{612}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{133}{204}\right)\) \(e\left(\frac{383}{612}\right)\) \(e\left(\frac{133}{153}\right)\) \(e\left(\frac{577}{612}\right)\) \(e\left(\frac{98}{153}\right)\)
\(\chi_{7803}(412,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{306}\right)\) \(e\left(\frac{11}{153}\right)\) \(e\left(\frac{155}{612}\right)\) \(e\left(\frac{145}{612}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{61}{612}\right)\) \(e\left(\frac{8}{153}\right)\) \(e\left(\frac{167}{612}\right)\) \(e\left(\frac{22}{153}\right)\)
\(\chi_{7803}(421,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{306}\right)\) \(e\left(\frac{131}{153}\right)\) \(e\left(\frac{149}{612}\right)\) \(e\left(\frac{475}{612}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{31}{612}\right)\) \(e\left(\frac{137}{153}\right)\) \(e\left(\frac{125}{612}\right)\) \(e\left(\frac{109}{153}\right)\)
\(\chi_{7803}(463,\cdot)\) \(1\) \(1\) \(e\left(\frac{259}{306}\right)\) \(e\left(\frac{106}{153}\right)\) \(e\left(\frac{367}{612}\right)\) \(e\left(\frac{521}{612}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{101}{612}\right)\) \(e\left(\frac{91}{153}\right)\) \(e\left(\frac{427}{612}\right)\) \(e\left(\frac{59}{153}\right)\)
\(\chi_{7803}(472,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{306}\right)\) \(e\left(\frac{19}{153}\right)\) \(e\left(\frac{73}{612}\right)\) \(e\left(\frac{167}{612}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{37}{204}\right)\) \(e\left(\frac{467}{612}\right)\) \(e\left(\frac{139}{153}\right)\) \(e\left(\frac{205}{612}\right)\) \(e\left(\frac{38}{153}\right)\)
\(\chi_{7803}(565,\cdot)\) \(1\) \(1\) \(e\left(\frac{143}{306}\right)\) \(e\left(\frac{143}{153}\right)\) \(e\left(\frac{179}{612}\right)\) \(e\left(\frac{49}{612}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{155}{204}\right)\) \(e\left(\frac{181}{612}\right)\) \(e\left(\frac{104}{153}\right)\) \(e\left(\frac{335}{612}\right)\) \(e\left(\frac{133}{153}\right)\)
\(\chi_{7803}(574,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{306}\right)\) \(e\left(\frac{101}{153}\right)\) \(e\left(\frac{533}{612}\right)\) \(e\left(\frac{163}{612}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{41}{204}\right)\) \(e\left(\frac{115}{612}\right)\) \(e\left(\frac{143}{153}\right)\) \(e\left(\frac{365}{612}\right)\) \(e\left(\frac{49}{153}\right)\)
\(\chi_{7803}(625,\cdot)\) \(1\) \(1\) \(e\left(\frac{295}{306}\right)\) \(e\left(\frac{142}{153}\right)\) \(e\left(\frac{457}{612}\right)\) \(e\left(\frac{467}{612}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{145}{204}\right)\) \(e\left(\frac{551}{612}\right)\) \(e\left(\frac{145}{153}\right)\) \(e\left(\frac{445}{612}\right)\) \(e\left(\frac{131}{153}\right)\)
\(\chi_{7803}(718,\cdot)\) \(1\) \(1\) \(e\left(\frac{275}{306}\right)\) \(e\left(\frac{122}{153}\right)\) \(e\left(\frac{203}{612}\right)\) \(e\left(\frac{565}{612}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{47}{204}\right)\) \(e\left(\frac{301}{612}\right)\) \(e\left(\frac{47}{153}\right)\) \(e\left(\frac{503}{612}\right)\) \(e\left(\frac{91}{153}\right)\)
\(\chi_{7803}(727,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{306}\right)\) \(e\left(\frac{71}{153}\right)\) \(e\left(\frac{305}{612}\right)\) \(e\left(\frac{463}{612}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{199}{612}\right)\) \(e\left(\frac{149}{153}\right)\) \(e\left(\frac{605}{612}\right)\) \(e\left(\frac{142}{153}\right)\)
\(\chi_{7803}(769,\cdot)\) \(1\) \(1\) \(e\left(\frac{217}{306}\right)\) \(e\left(\frac{64}{153}\right)\) \(e\left(\frac{415}{612}\right)\) \(e\left(\frac{329}{612}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{79}{204}\right)\) \(e\left(\frac{341}{612}\right)\) \(e\left(\frac{130}{153}\right)\) \(e\left(\frac{151}{612}\right)\) \(e\left(\frac{128}{153}\right)\)
\(\chi_{7803}(778,\cdot)\) \(1\) \(1\) \(e\left(\frac{265}{306}\right)\) \(e\left(\frac{112}{153}\right)\) \(e\left(\frac{229}{612}\right)\) \(e\left(\frac{155}{612}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{23}{612}\right)\) \(e\left(\frac{151}{153}\right)\) \(e\left(\frac{73}{612}\right)\) \(e\left(\frac{71}{153}\right)\)
\(\chi_{7803}(871,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{306}\right)\) \(e\left(\frac{101}{153}\right)\) \(e\left(\frac{227}{612}\right)\) \(e\left(\frac{469}{612}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{143}{204}\right)\) \(e\left(\frac{421}{612}\right)\) \(e\left(\frac{143}{153}\right)\) \(e\left(\frac{59}{612}\right)\) \(e\left(\frac{49}{153}\right)\)
\(\chi_{7803}(880,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{306}\right)\) \(e\left(\frac{41}{153}\right)\) \(e\left(\frac{77}{612}\right)\) \(e\left(\frac{151}{612}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{283}{612}\right)\) \(e\left(\frac{2}{153}\right)\) \(e\left(\frac{233}{612}\right)\) \(e\left(\frac{82}{153}\right)\)
\(\chi_{7803}(922,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{306}\right)\) \(e\left(\frac{43}{153}\right)\) \(e\left(\frac{439}{612}\right)\) \(e\left(\frac{233}{612}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{461}{612}\right)\) \(e\left(\frac{73}{153}\right)\) \(e\left(\frac{319}{612}\right)\) \(e\left(\frac{86}{153}\right)\)
\(\chi_{7803}(931,\cdot)\) \(1\) \(1\) \(e\left(\frac{235}{306}\right)\) \(e\left(\frac{82}{153}\right)\) \(e\left(\frac{1}{612}\right)\) \(e\left(\frac{455}{612}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{157}{204}\right)\) \(e\left(\frac{107}{612}\right)\) \(e\left(\frac{4}{153}\right)\) \(e\left(\frac{313}{612}\right)\) \(e\left(\frac{11}{153}\right)\)
\(\chi_{7803}(1024,\cdot)\) \(1\) \(1\) \(e\left(\frac{233}{306}\right)\) \(e\left(\frac{80}{153}\right)\) \(e\left(\frac{251}{612}\right)\) \(e\left(\frac{373}{612}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{35}{204}\right)\) \(e\left(\frac{541}{612}\right)\) \(e\left(\frac{86}{153}\right)\) \(e\left(\frac{227}{612}\right)\) \(e\left(\frac{7}{153}\right)\)
\(\chi_{7803}(1033,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{306}\right)\) \(e\left(\frac{11}{153}\right)\) \(e\left(\frac{461}{612}\right)\) \(e\left(\frac{451}{612}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{161}{204}\right)\) \(e\left(\frac{367}{612}\right)\) \(e\left(\frac{8}{153}\right)\) \(e\left(\frac{473}{612}\right)\) \(e\left(\frac{22}{153}\right)\)
\(\chi_{7803}(1075,\cdot)\) \(1\) \(1\) \(e\left(\frac{175}{306}\right)\) \(e\left(\frac{22}{153}\right)\) \(e\left(\frac{463}{612}\right)\) \(e\left(\frac{137}{612}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{67}{204}\right)\) \(e\left(\frac{581}{612}\right)\) \(e\left(\frac{16}{153}\right)\) \(e\left(\frac{487}{612}\right)\) \(e\left(\frac{44}{153}\right)\)
\(\chi_{7803}(1084,\cdot)\) \(1\) \(1\) \(e\left(\frac{205}{306}\right)\) \(e\left(\frac{52}{153}\right)\) \(e\left(\frac{385}{612}\right)\) \(e\left(\frac{143}{612}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{61}{204}\right)\) \(e\left(\frac{191}{612}\right)\) \(e\left(\frac{10}{153}\right)\) \(e\left(\frac{553}{612}\right)\) \(e\left(\frac{104}{153}\right)\)
\(\chi_{7803}(1177,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{306}\right)\) \(e\left(\frac{59}{153}\right)\) \(e\left(\frac{275}{612}\right)\) \(e\left(\frac{277}{612}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{49}{612}\right)\) \(e\left(\frac{29}{153}\right)\) \(e\left(\frac{395}{612}\right)\) \(e\left(\frac{118}{153}\right)\)
\(\chi_{7803}(1186,\cdot)\) \(1\) \(1\) \(e\left(\frac{287}{306}\right)\) \(e\left(\frac{134}{153}\right)\) \(e\left(\frac{233}{612}\right)\) \(e\left(\frac{139}{612}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{65}{204}\right)\) \(e\left(\frac{451}{612}\right)\) \(e\left(\frac{14}{153}\right)\) \(e\left(\frac{101}{612}\right)\) \(e\left(\frac{115}{153}\right)\)