Properties

Label 768.z
Modulus $768$
Conductor $256$
Order $64$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([0,47,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,768)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(768\)
Conductor: \(256\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 256.m
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{768}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{768}(85,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{768}(109,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{768}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{768}(205,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(253,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{768}(277,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{768}(301,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(325,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(349,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{768}(373,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{768}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(421,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(445,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{768}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{768}(493,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(517,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{768}(565,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{768}(589,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(613,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(637,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{768}(661,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{768}(685,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{768}(709,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{768}(733,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{3}{8}\right)\)