Properties

Label 768.37
Modulus $768$
Conductor $256$
Order $64$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([0,25,0]))
 
Copy content pari:[g,chi] = znchar(Mod(37,768))
 

Basic properties

Modulus: \(768\)
Conductor: \(256\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{256}(37,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 768.z

\(\chi_{768}(13,\cdot)\) \(\chi_{768}(37,\cdot)\) \(\chi_{768}(61,\cdot)\) \(\chi_{768}(85,\cdot)\) \(\chi_{768}(109,\cdot)\) \(\chi_{768}(133,\cdot)\) \(\chi_{768}(157,\cdot)\) \(\chi_{768}(181,\cdot)\) \(\chi_{768}(205,\cdot)\) \(\chi_{768}(229,\cdot)\) \(\chi_{768}(253,\cdot)\) \(\chi_{768}(277,\cdot)\) \(\chi_{768}(301,\cdot)\) \(\chi_{768}(325,\cdot)\) \(\chi_{768}(349,\cdot)\) \(\chi_{768}(373,\cdot)\) \(\chi_{768}(397,\cdot)\) \(\chi_{768}(421,\cdot)\) \(\chi_{768}(445,\cdot)\) \(\chi_{768}(469,\cdot)\) \(\chi_{768}(493,\cdot)\) \(\chi_{768}(517,\cdot)\) \(\chi_{768}(541,\cdot)\) \(\chi_{768}(565,\cdot)\) \(\chi_{768}(589,\cdot)\) \(\chi_{768}(613,\cdot)\) \(\chi_{768}(637,\cdot)\) \(\chi_{768}(661,\cdot)\) \(\chi_{768}(685,\cdot)\) \(\chi_{768}(709,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

Values on generators

\((511,517,257)\) → \((1,e\left(\frac{25}{64}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 768 }(37, a) \) \(1\)\(1\)\(e\left(\frac{25}{64}\right)\)\(e\left(\frac{29}{32}\right)\)\(e\left(\frac{13}{64}\right)\)\(e\left(\frac{23}{64}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{63}{64}\right)\)\(e\left(\frac{15}{32}\right)\)\(e\left(\frac{25}{32}\right)\)\(e\left(\frac{3}{64}\right)\)\(e\left(\frac{1}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 768 }(37,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 768 }(37,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 768 }(37,·),\chi_{ 768 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 768 }(37,·)) \;\) at \(\; a,b = \) e.g. 1,2