sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(765, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,0,5]))
pari:[g,chi] = znchar(Mod(586,765))
\(\chi_{765}(406,\cdot)\)
\(\chi_{765}(451,\cdot)\)
\(\chi_{765}(586,\cdot)\)
\(\chi_{765}(631,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((596,307,496)\) → \((1,1,e\left(\frac{5}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(19\) | \(22\) |
| \( \chi_{ 765 }(586, a) \) |
\(1\) | \(1\) | \(-i\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)