Properties

Label 763.10
Modulus $763$
Conductor $763$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(763, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([18,25]))
 
Copy content pari:[g,chi] = znchar(Mod(10,763))
 

Basic properties

Modulus: \(763\)
Conductor: \(763\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 763.cl

\(\chi_{763}(10,\cdot)\) \(\chi_{763}(24,\cdot)\) \(\chi_{763}(47,\cdot)\) \(\chi_{763}(52,\cdot)\) \(\chi_{763}(115,\cdot)\) \(\chi_{763}(122,\cdot)\) \(\chi_{763}(159,\cdot)\) \(\chi_{763}(178,\cdot)\) \(\chi_{763}(229,\cdot)\) \(\chi_{763}(236,\cdot)\) \(\chi_{763}(257,\cdot)\) \(\chi_{763}(269,\cdot)\) \(\chi_{763}(276,\cdot)\) \(\chi_{763}(285,\cdot)\) \(\chi_{763}(367,\cdot)\) \(\chi_{763}(369,\cdot)\) \(\chi_{763}(397,\cdot)\) \(\chi_{763}(418,\cdot)\) \(\chi_{763}(423,\cdot)\) \(\chi_{763}(425,\cdot)\) \(\chi_{763}(430,\cdot)\) \(\chi_{763}(493,\cdot)\) \(\chi_{763}(495,\cdot)\) \(\chi_{763}(521,\cdot)\) \(\chi_{763}(535,\cdot)\) \(\chi_{763}(598,\cdot)\) \(\chi_{763}(607,\cdot)\) \(\chi_{763}(640,\cdot)\) \(\chi_{763}(668,\cdot)\) \(\chi_{763}(684,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((437,442)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{25}{108}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 763 }(10, a) \) \(1\)\(1\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{11}{54}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{23}{54}\right)\)\(e\left(\frac{79}{108}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{27}\right)\)\(e\left(\frac{103}{108}\right)\)\(e\left(\frac{95}{108}\right)\)\(e\left(\frac{7}{27}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 763 }(10,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 763 }(10,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 763 }(10,·),\chi_{ 763 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 763 }(10,·)) \;\) at \(\; a,b = \) e.g. 1,2