Properties

Conductor 7623
Order 33
Real no
Primitive yes
Minimal yes
Parity even
Orbit label 7623.dl

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(7623)
 
sage: chi = H[3532]
 
pari: [g,chi] = znchar(Mod(3532,7623))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 7623
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 33
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = even
Orbit label = 7623.dl
Orbit index = 90

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{7623}(67,\cdot)\) \(\chi_{7623}(331,\cdot)\) \(\chi_{7623}(760,\cdot)\) \(\chi_{7623}(1024,\cdot)\) \(\chi_{7623}(1717,\cdot)\) \(\chi_{7623}(2146,\cdot)\) \(\chi_{7623}(2410,\cdot)\) \(\chi_{7623}(2839,\cdot)\) \(\chi_{7623}(3103,\cdot)\) \(\chi_{7623}(3532,\cdot)\) \(\chi_{7623}(3796,\cdot)\) \(\chi_{7623}(4225,\cdot)\) \(\chi_{7623}(4489,\cdot)\) \(\chi_{7623}(4918,\cdot)\) \(\chi_{7623}(5182,\cdot)\) \(\chi_{7623}(5611,\cdot)\) \(\chi_{7623}(5875,\cdot)\) \(\chi_{7623}(6304,\cdot)\) \(\chi_{7623}(6568,\cdot)\) \(\chi_{7623}(6997,\cdot)\)

Values on generators

\((848,4357,4600)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{2}{3}\right),e\left(\frac{7}{11}\right))\)

Values

-112458101316171920
\(1\)\(1\)\(e\left(\frac{10}{33}\right)\)\(e\left(\frac{20}{33}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{13}{33}\right)\)\(e\left(\frac{31}{33}\right)\)\(e\left(\frac{7}{33}\right)\)\(e\left(\frac{28}{33}\right)\)\(e\left(\frac{5}{33}\right)\)\(e\left(\frac{23}{33}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{33})\)