Properties

 Label 760.173 Modulus $760$ Conductor $760$ Order $36$ Real no Primitive yes Minimal yes Parity even

Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(760, base_ring=CyclotomicField(36))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,18,27,2]))

pari: [g,chi] = znchar(Mod(173,760))

Basic properties

 Modulus: $$760$$ Conductor: $$760$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$36$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Galois orbit 760.cs

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Values on generators

$$(191,381,457,401)$$ → $$(1,-1,-i,e\left(\frac{1}{18}\right))$$

Values

 $$-1$$ $$1$$ $$3$$ $$7$$ $$9$$ $$11$$ $$13$$ $$17$$ $$21$$ $$23$$ $$27$$ $$29$$ $$1$$ $$1$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{17}{18}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 760 }(173,a) \;$$ at $$\;a =$$ e.g. 2

Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 760 }(173,·) )\;$$ at $$\;a =$$ e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 760 }(173,·),\chi_{ 760 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 760 }(173,·)) \;$$ at $$\; a,b =$$ e.g. 1,2