sage: H = DirichletGroup(760)
pari: g = idealstar(,760,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 288 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{760}(191,\cdot)$, $\chi_{760}(381,\cdot)$, $\chi_{760}(457,\cdot)$, $\chi_{760}(401,\cdot)$ |
First 32 of 288 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{760}(1,\cdot)\) | 760.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{760}(3,\cdot)\) | 760.cn | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{760}(7,\cdot)\) | 760.bq | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{760}(9,\cdot)\) | 760.cg | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{760}(11,\cdot)\) | 760.bc | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{760}(13,\cdot)\) | 760.cs | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{760}(17,\cdot)\) | 760.cm | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{760}(21,\cdot)\) | 760.cb | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{760}(23,\cdot)\) | 760.ct | 36 | no | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{760}(27,\cdot)\) | 760.bu | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{760}(29,\cdot)\) | 760.ck | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{760}(31,\cdot)\) | 760.ba | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{760}(33,\cdot)\) | 760.co | 36 | no | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{760}(37,\cdot)\) | 760.t | 4 | yes | \(1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(i\) | \(1\) | \(-i\) | \(i\) | \(-1\) |
\(\chi_{760}(39,\cdot)\) | 760.n | 2 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{760}(41,\cdot)\) | 760.by | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{760}(43,\cdot)\) | 760.cp | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{760}(47,\cdot)\) | 760.ct | 36 | no | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{760}(49,\cdot)\) | 760.bj | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{760}(51,\cdot)\) | 760.ch | 18 | no | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{760}(53,\cdot)\) | 760.cs | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{760}(59,\cdot)\) | 760.bx | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{760}(61,\cdot)\) | 760.cc | 18 | no | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{760}(63,\cdot)\) | 760.ct | 36 | no | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{760}(67,\cdot)\) | 760.cn | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{760}(69,\cdot)\) | 760.bh | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{760}(71,\cdot)\) | 760.ci | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{760}(73,\cdot)\) | 760.cm | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{760}(77,\cdot)\) | 760.r | 4 | no | \(-1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(1\) |
\(\chi_{760}(79,\cdot)\) | 760.cd | 18 | no | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{760}(81,\cdot)\) | 760.bo | 9 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{760}(83,\cdot)\) | 760.bw | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) |