Properties

Modulus $760$
Structure \(C_{2}\times C_{2}\times C_{2}\times C_{36}\)
Order $288$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(760)
 
pari: g = idealstar(,760,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 288
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{2}\times C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{760}(191,\cdot)$, $\chi_{760}(381,\cdot)$, $\chi_{760}(457,\cdot)$, $\chi_{760}(401,\cdot)$

First 32 of 288 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{760}(1,\cdot)\) 760.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{760}(3,\cdot)\) 760.cn 36 yes \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{760}(7,\cdot)\) 760.bq 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{760}(9,\cdot)\) 760.cg 18 no \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{760}(11,\cdot)\) 760.bc 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{760}(13,\cdot)\) 760.cs 36 yes \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{760}(17,\cdot)\) 760.cm 36 no \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{760}(21,\cdot)\) 760.cb 18 no \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{760}(23,\cdot)\) 760.ct 36 no \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{760}(27,\cdot)\) 760.bu 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{760}(29,\cdot)\) 760.ck 18 yes \(-1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{760}(31,\cdot)\) 760.ba 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{760}(33,\cdot)\) 760.co 36 no \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{760}(37,\cdot)\) 760.t 4 yes \(1\) \(1\) \(-i\) \(i\) \(-1\) \(-1\) \(-i\) \(i\) \(1\) \(-i\) \(i\) \(-1\)
\(\chi_{760}(39,\cdot)\) 760.n 2 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{760}(41,\cdot)\) 760.by 18 no \(-1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{760}(43,\cdot)\) 760.cp 36 yes \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{760}(47,\cdot)\) 760.ct 36 no \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{760}(49,\cdot)\) 760.bj 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{760}(51,\cdot)\) 760.ch 18 no \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{760}(53,\cdot)\) 760.cs 36 yes \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{760}(59,\cdot)\) 760.bx 18 yes \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{760}(61,\cdot)\) 760.cc 18 no \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{760}(63,\cdot)\) 760.ct 36 no \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{760}(67,\cdot)\) 760.cn 36 yes \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{760}(69,\cdot)\) 760.bh 6 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{760}(71,\cdot)\) 760.ci 18 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{760}(73,\cdot)\) 760.cm 36 no \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{760}(77,\cdot)\) 760.r 4 no \(-1\) \(1\) \(i\) \(i\) \(-1\) \(-1\) \(i\) \(i\) \(-1\) \(-i\) \(-i\) \(1\)
\(\chi_{760}(79,\cdot)\) 760.cd 18 no \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{760}(81,\cdot)\) 760.bo 9 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{760}(83,\cdot)\) 760.bw 12 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\)
Click here to search among the remaining 256 characters.