Properties

Label 756.83
Modulus $756$
Conductor $756$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,1,9]))
 
Copy content pari:[g,chi] = znchar(Mod(83,756))
 

Basic properties

Modulus: \(756\)
Conductor: \(756\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 756.bv

\(\chi_{756}(83,\cdot)\) \(\chi_{756}(167,\cdot)\) \(\chi_{756}(335,\cdot)\) \(\chi_{756}(419,\cdot)\) \(\chi_{756}(587,\cdot)\) \(\chi_{756}(671,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.31252066838841568420795791520825344.1

Values on generators

\((379,29,325)\) → \((-1,e\left(\frac{1}{18}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 756 }(83, a) \) \(-1\)\(1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 756 }(83,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 756 }(83,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 756 }(83,·),\chi_{ 756 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 756 }(83,·)) \;\) at \(\; a,b = \) e.g. 1,2