Properties

Conductor 189
Order 18
Real no
Primitive no
Minimal yes
Parity even
Orbit label 756.bx

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(756)
 
sage: chi = H[41]
 
pari: [g,chi] = znchar(Mod(41,756))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 189
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 18
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = even
Orbit label = 756.bx
Orbit index = 50

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{756}(41,\cdot)\) \(\chi_{756}(209,\cdot)\) \(\chi_{756}(293,\cdot)\) \(\chi_{756}(461,\cdot)\) \(\chi_{756}(545,\cdot)\) \(\chi_{756}(713,\cdot)\)

Values on generators

\((379,29,325)\) → \((1,e\left(\frac{17}{18}\right),-1)\)

Values

-115111317192325293137
\(1\)\(1\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{2}{3}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{9})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 756 }(41,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{756}(41,\cdot)) = \sum_{r\in \Z/756\Z} \chi_{756}(41,r) e\left(\frac{r}{378}\right) = -24.5708353066+12.3399372906i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 756 }(41,·),\chi_{ 756 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{756}(41,\cdot),\chi_{756}(1,\cdot)) = \sum_{r\in \Z/756\Z} \chi_{756}(41,r) \chi_{756}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 756 }(41,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{756}(41,·)) = \sum_{r \in \Z/756\Z} \chi_{756}(41,r) e\left(\frac{1 r + 2 r^{-1}}{756}\right) = -0.0 \)