Properties

Label 7524.685
Modulus $7524$
Conductor $11$
Order $5$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7524, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,8,0]))
 
pari: [g,chi] = znchar(Mod(685,7524))
 

Basic properties

Modulus: \(7524\)
Conductor: \(11\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(5\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7524.u

\(\chi_{7524}(685,\cdot)\) \(\chi_{7524}(1369,\cdot)\) \(\chi_{7524}(2737,\cdot)\) \(\chi_{7524}(4789,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{11})^+\)

Values on generators

\((3763,6689,4105,2377)\) → \((1,1,e\left(\frac{4}{5}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 7524 }(685, a) \) \(1\)\(1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7524 }(685,a) \;\) at \(\;a = \) e.g. 2