Properties

Label 75.k
Modulus $75$
Conductor $25$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(75, base_ring=CyclotomicField(20))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,19]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(13,75))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(75\)
Conductor: \(25\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 25.f
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: \(\Q(\zeta_{25})\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{75}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{75}(22,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{75}(28,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{75}(37,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{75}(52,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{75}(58,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{75}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{75}(73,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(-i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\)