Properties

Modulus $75$
Structure \(C_{2}\times C_{20}\)
Order $40$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(75)
 
pari: g = idealstar(,75,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 40
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{20}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{75}(26,\cdot)$, $\chi_{75}(52,\cdot)$

First 32 of 40 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{75}(1,\cdot)\) 75.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{75}(2,\cdot)\) 75.l 20 yes \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{75}(4,\cdot)\) 75.i 10 no \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{75}(7,\cdot)\) 75.f 4 no \(-1\) \(1\) \(i\) \(-1\) \(i\) \(-i\) \(1\) \(-i\) \(-1\) \(1\) \(i\) \(-1\)
\(\chi_{75}(8,\cdot)\) 75.l 20 yes \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{75}(11,\cdot)\) 75.j 10 yes \(-1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{75}(13,\cdot)\) 75.k 20 no \(-1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{75}(14,\cdot)\) 75.h 10 yes \(-1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{75}(16,\cdot)\) 75.g 5 no \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{75}(17,\cdot)\) 75.l 20 yes \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{75}(19,\cdot)\) 75.i 10 no \(1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{75}(22,\cdot)\) 75.k 20 no \(-1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{75}(23,\cdot)\) 75.l 20 yes \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(-i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{75}(26,\cdot)\) 75.c 2 no \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)
\(\chi_{75}(28,\cdot)\) 75.k 20 no \(-1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{75}(29,\cdot)\) 75.h 10 yes \(-1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{75}(31,\cdot)\) 75.g 5 no \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{75}(32,\cdot)\) 75.e 4 no \(1\) \(1\) \(-i\) \(-1\) \(i\) \(i\) \(-1\) \(-i\) \(1\) \(1\) \(-i\) \(-1\)
\(\chi_{75}(34,\cdot)\) 75.i 10 no \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{75}(37,\cdot)\) 75.k 20 no \(-1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{75}(38,\cdot)\) 75.l 20 yes \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{75}(41,\cdot)\) 75.j 10 yes \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{75}(43,\cdot)\) 75.f 4 no \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(i\) \(1\) \(i\) \(-1\) \(1\) \(-i\) \(-1\)
\(\chi_{75}(44,\cdot)\) 75.h 10 yes \(-1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{75}(46,\cdot)\) 75.g 5 no \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{75}(47,\cdot)\) 75.l 20 yes \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{75}(49,\cdot)\) 75.b 2 no \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{75}(52,\cdot)\) 75.k 20 no \(-1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{75}(53,\cdot)\) 75.l 20 yes \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{75}(56,\cdot)\) 75.j 10 yes \(-1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{75}(58,\cdot)\) 75.k 20 no \(-1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{75}(59,\cdot)\) 75.h 10 yes \(-1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
Click here to search among the remaining 8 characters.