Properties

Label 7448.dv
Modulus $7448$
Conductor $532$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7448, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,0,15,4])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(1783,7448)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7448\)
Conductor: \(532\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 532.br
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.358978251109745001069338205028924260352.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{7448}(1783,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(-1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7448}(3559,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(-1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7448}(4527,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7448}(4735,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7448}(4919,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7448}(5519,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(-1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)