sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,14]))
pari:[g,chi] = znchar(Mod(785,7448))
\(\chi_{7448}(785,\cdot)\)
\(\chi_{7448}(1961,\cdot)\)
\(\chi_{7448}(2353,\cdot)\)
\(\chi_{7448}(2745,\cdot)\)
\(\chi_{7448}(5097,\cdot)\)
\(\chi_{7448}(5489,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3725,3041,3137)\) → \((1,1,1,e\left(\frac{7}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 7448 }(785, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)