sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1,1,0]))
pari:[g,chi] = znchar(Mod(2547,7448))
\(\chi_{7448}(2547,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3725,3041,3137)\) → \((-1,-1,-1,1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 7448 }(2547, a) \) |
\(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)