sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(741, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,3,13]))
pari:[g,chi] = znchar(Mod(706,741))
\(\chi_{741}(10,\cdot)\)
\(\chi_{741}(127,\cdot)\)
\(\chi_{741}(205,\cdot)\)
\(\chi_{741}(394,\cdot)\)
\(\chi_{741}(667,\cdot)\)
\(\chi_{741}(706,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((248,457,40)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{13}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 741 }(706, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)