from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(740, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,14]))
pari: [g,chi] = znchar(Mod(67,740))
Basic properties
Modulus: | \(740\) | |
Conductor: | \(740\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 740.ce
\(\chi_{740}(3,\cdot)\) \(\chi_{740}(67,\cdot)\) \(\chi_{740}(243,\cdot)\) \(\chi_{740}(247,\cdot)\) \(\chi_{740}(263,\cdot)\) \(\chi_{740}(287,\cdot)\) \(\chi_{740}(363,\cdot)\) \(\chi_{740}(447,\cdot)\) \(\chi_{740}(543,\cdot)\) \(\chi_{740}(583,\cdot)\) \(\chi_{740}(687,\cdot)\) \(\chi_{740}(707,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | 36.36.106691194941232012082366394962388535099939328266549703168000000000000000000000000000.1 |
Values on generators
\((371,297,261)\) → \((-1,i,e\left(\frac{7}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 740 }(67, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)