sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(725, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([3,3]))
pari:[g,chi] = znchar(Mod(568,725))
\(\chi_{725}(157,\cdot)\)
\(\chi_{725}(568,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((552,176)\) → \((-i,-i)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 725 }(568, a) \) |
\(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(-i\) | \(1\) | \(-i\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)