![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,1]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,1]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(577,720))
        pari:[g,chi] = znchar(Mod(577,720))
         
     
    
  \(\chi_{720}(433,\cdot)\)
  \(\chi_{720}(577,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((271,181,641,577)\) → \((1,1,1,i)\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | 
    
    
      | \( \chi_{ 720 }(577, a) \) | \(-1\) | \(1\) | \(i\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(1\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)