Properties

Label 7098.ek
Modulus $7098$
Conductor $507$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(7098, base_ring=CyclotomicField(156))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([78,0,137]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(71,7098))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7098\)
Conductor: \(507\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 507.x
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{7098}(71,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{23}{156}\right)\)
\(\chi_{7098}(197,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{139}{156}\right)\)
\(\chi_{7098}(323,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{73}{156}\right)\)
\(\chi_{7098}(449,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{53}{156}\right)\)
\(\chi_{7098}(617,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{11}{156}\right)\)
\(\chi_{7098}(743,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{103}{156}\right)\)
\(\chi_{7098}(869,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{109}{156}\right)\)
\(\chi_{7098}(1163,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{155}{156}\right)\)
\(\chi_{7098}(1289,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{67}{156}\right)\)
\(\chi_{7098}(1415,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{145}{156}\right)\)
\(\chi_{7098}(1541,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{77}{156}\right)\)
\(\chi_{7098}(1835,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{31}{156}\right)\)
\(\chi_{7098}(1961,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{25}{156}\right)\)
\(\chi_{7098}(2087,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{89}{156}\right)\)
\(\chi_{7098}(2255,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{131}{156}\right)\)
\(\chi_{7098}(2381,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{151}{156}\right)\)
\(\chi_{7098}(2507,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{61}{156}\right)\)
\(\chi_{7098}(2633,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{101}{156}\right)\)
\(\chi_{7098}(2801,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{119}{156}\right)\)
\(\chi_{7098}(2927,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{115}{156}\right)\)
\(\chi_{7098}(3053,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{97}{156}\right)\)
\(\chi_{7098}(3179,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{113}{156}\right)\)
\(\chi_{7098}(3347,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{107}{156}\right)\)
\(\chi_{7098}(3473,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{79}{156}\right)\)
\(\chi_{7098}(3599,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{133}{156}\right)\)
\(\chi_{7098}(3725,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{125}{156}\right)\)
\(\chi_{7098}(3893,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{95}{156}\right)\)
\(\chi_{7098}(4019,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{43}{156}\right)\)
\(\chi_{7098}(4271,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{137}{156}\right)\)
\(\chi_{7098}(4439,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{83}{156}\right)\)
\(\chi_{7098}(4565,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{7}{156}\right)\)