Properties

Label 7098.cs
Modulus $7098$
Conductor $1183$
Order $39$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(7098, base_ring=CyclotomicField(78))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,26,68]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(289,7098))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7098\)
Conductor: \(1183\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(39\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1183.bi
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: 39.39.253721406991290895924770503111827676888647505643788160579278763946491805765758913183386148271215912203961.2

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{7098}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{7098}(835,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{37}{39}\right)\)
\(\chi_{7098}(1075,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{7098}(1381,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{31}{39}\right)\)
\(\chi_{7098}(1621,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{7098}(1927,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{25}{39}\right)\)
\(\chi_{7098}(2167,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{7098}(2473,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{7098}(2713,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{7098}(3259,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{29}{39}\right)\)
\(\chi_{7098}(3565,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{39}\right)\)
\(\chi_{7098}(3805,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{7098}(4111,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{7098}(4351,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{38}{39}\right)\)
\(\chi_{7098}(4657,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{34}{39}\right)\)
\(\chi_{7098}(4897,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{7098}(5203,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{7098}(5443,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{39}\right)\)
\(\chi_{7098}(5749,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{7098}(5989,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{7098}(6295,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{16}{39}\right)\)
\(\chi_{7098}(6535,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{7098}(6841,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{7098}(7081,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{39}\right)\)