# Properties

 Label 7098.by Modulus $7098$ Conductor $91$ Order $12$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(7098, base_ring=CyclotomicField(12))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,10,5]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(19,7098))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$7098$$ Conductor: $$91$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$12$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 91.w sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{12})$$ Fixed field: 12.12.506240953553539690213.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$11$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$ $$41$$
$$\chi_{7098}(19,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{7098}(4483,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$
$$\chi_{7098}(5995,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{7098}(6403,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$