Properties

Label 7098.269
Modulus $7098$
Conductor $3549$
Order $78$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(7098, base_ring=CyclotomicField(78))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([39,13,10]))
 
pari: [g,chi] = znchar(Mod(269,7098))
 

Basic properties

Modulus: \(7098\)
Conductor: \(3549\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(78\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3549}(269,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7098.do

\(\chi_{7098}(269,\cdot)\) \(\chi_{7098}(341,\cdot)\) \(\chi_{7098}(815,\cdot)\) \(\chi_{7098}(887,\cdot)\) \(\chi_{7098}(1361,\cdot)\) \(\chi_{7098}(1433,\cdot)\) \(\chi_{7098}(1907,\cdot)\) \(\chi_{7098}(1979,\cdot)\) \(\chi_{7098}(2453,\cdot)\) \(\chi_{7098}(2525,\cdot)\) \(\chi_{7098}(2999,\cdot)\) \(\chi_{7098}(3071,\cdot)\) \(\chi_{7098}(3545,\cdot)\) \(\chi_{7098}(3617,\cdot)\) \(\chi_{7098}(4091,\cdot)\) \(\chi_{7098}(4163,\cdot)\) \(\chi_{7098}(4637,\cdot)\) \(\chi_{7098}(5183,\cdot)\) \(\chi_{7098}(5255,\cdot)\) \(\chi_{7098}(5729,\cdot)\) \(\chi_{7098}(5801,\cdot)\) \(\chi_{7098}(6347,\cdot)\) \(\chi_{7098}(6821,\cdot)\) \(\chi_{7098}(6893,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Values on generators

\((4733,5071,6931)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{5}{39}\right))\)

Values

\(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\(1\)\(1\)\(e\left(\frac{19}{39}\right)\)\(e\left(\frac{29}{78}\right)\)\(e\left(\frac{5}{13}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{38}{39}\right)\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{67}{78}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{35}{39}\right)\)
value at e.g. 2