Properties

Conductor 709
Order 59
Real No
Primitive Yes
Parity Even
Orbit Label 709.g

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(709)
 
sage: chi = H[175]
 
pari: [g,chi] = znchar(Mod(175,709))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 709
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 59
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 709.g
Orbit index = 7

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{709}(20,\cdot)\) \(\chi_{709}(27,\cdot)\) \(\chi_{709}(44,\cdot)\) \(\chi_{709}(59,\cdot)\) \(\chi_{709}(63,\cdot)\) \(\chi_{709}(75,\cdot)\) \(\chi_{709}(82,\cdot)\) \(\chi_{709}(87,\cdot)\) \(\chi_{709}(104,\cdot)\) \(\chi_{709}(138,\cdot)\) \(\chi_{709}(144,\cdot)\) \(\chi_{709}(147,\cdot)\) \(\chi_{709}(149,\cdot)\) \(\chi_{709}(163,\cdot)\) \(\chi_{709}(165,\cdot)\) \(\chi_{709}(170,\cdot)\) \(\chi_{709}(171,\cdot)\) \(\chi_{709}(172,\cdot)\) \(\chi_{709}(175,\cdot)\) \(\chi_{709}(181,\cdot)\) \(\chi_{709}(186,\cdot)\) \(\chi_{709}(201,\cdot)\) \(\chi_{709}(203,\cdot)\) \(\chi_{709}(222,\cdot)\) \(\chi_{709}(283,\cdot)\) \(\chi_{709}(322,\cdot)\) \(\chi_{709}(336,\cdot)\) \(\chi_{709}(339,\cdot)\) \(\chi_{709}(343,\cdot)\) \(\chi_{709}(363,\cdot)\) ...

Values on generators

\(2\) → \(e\left(\frac{58}{59}\right)\)

Values

-11234567891011
\(1\)\(1\)\(e\left(\frac{58}{59}\right)\)\(e\left(\frac{5}{59}\right)\)\(e\left(\frac{57}{59}\right)\)\(e\left(\frac{32}{59}\right)\)\(e\left(\frac{4}{59}\right)\)\(e\left(\frac{7}{59}\right)\)\(e\left(\frac{56}{59}\right)\)\(e\left(\frac{10}{59}\right)\)\(e\left(\frac{31}{59}\right)\)\(e\left(\frac{38}{59}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{59})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 709 }(175,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{709}(175,\cdot)) = \sum_{r\in \Z/709\Z} \chi_{709}(175,r) e\left(\frac{2r}{709}\right) = 24.4356320171+10.5782743358i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 709 }(175,·),\chi_{ 709 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{709}(175,\cdot),\chi_{709}(1,\cdot)) = \sum_{r\in \Z/709\Z} \chi_{709}(175,r) \chi_{709}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 709 }(175,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{709}(175,·)) = \sum_{r \in \Z/709\Z} \chi_{709}(175,r) e\left(\frac{1 r + 2 r^{-1}}{709}\right) = -5.3723077593+0.2863317221i \)