Properties

Label 7056.iz
Modulus $7056$
Conductor $2352$
Order $84$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7056, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([0,63,42,74])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(269,7056)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7056\)
Conductor: \(2352\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2352.dr
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{7056}(269,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{79}{84}\right)\)
\(\chi_{7056}(341,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{84}\right)\)
\(\chi_{7056}(773,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{61}{84}\right)\)
\(\chi_{7056}(845,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{84}\right)\)
\(\chi_{7056}(1277,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{43}{84}\right)\)
\(\chi_{7056}(1349,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{84}\right)\)
\(\chi_{7056}(1781,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{84}\right)\)
\(\chi_{7056}(1853,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{84}\right)\)
\(\chi_{7056}(2357,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{84}\right)\)
\(\chi_{7056}(2789,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{73}{84}\right)\)
\(\chi_{7056}(3293,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{55}{84}\right)\)
\(\chi_{7056}(3365,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{41}{84}\right)\)
\(\chi_{7056}(3797,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{37}{84}\right)\)
\(\chi_{7056}(3869,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{47}{84}\right)\)
\(\chi_{7056}(4301,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{84}\right)\)
\(\chi_{7056}(4373,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{53}{84}\right)\)
\(\chi_{7056}(4805,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{84}\right)\)
\(\chi_{7056}(4877,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{59}{84}\right)\)
\(\chi_{7056}(5309,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{67}{84}\right)\)
\(\chi_{7056}(5381,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{65}{84}\right)\)
\(\chi_{7056}(5885,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{71}{84}\right)\)
\(\chi_{7056}(6317,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{84}\right)\)
\(\chi_{7056}(6821,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{84}\right)\)
\(\chi_{7056}(6893,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{83}{84}\right)\)