Properties

Label 7056.ex
Modulus $7056$
Conductor $1176$
Order $14$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7056, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,7,7,8])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(71,7056)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7056\)
Conductor: \(1176\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1176.bn
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{7056}(71,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{7056}(2087,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{7056}(3095,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{7056}(4103,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{7056}(5111,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{7056}(6119,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(e\left(\frac{1}{14}\right)\)