Properties

Label 7056.4843
Modulus $7056$
Conductor $784$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7056, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([14,7,0,10]))
 
Copy content pari:[g,chi] = znchar(Mod(4843,7056))
 

Basic properties

Modulus: \(7056\)
Conductor: \(784\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{784}(139,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7056.fo

\(\chi_{7056}(307,\cdot)\) \(\chi_{7056}(811,\cdot)\) \(\chi_{7056}(1315,\cdot)\) \(\chi_{7056}(1819,\cdot)\) \(\chi_{7056}(2323,\cdot)\) \(\chi_{7056}(2827,\cdot)\) \(\chi_{7056}(3835,\cdot)\) \(\chi_{7056}(4339,\cdot)\) \(\chi_{7056}(4843,\cdot)\) \(\chi_{7056}(5347,\cdot)\) \(\chi_{7056}(5851,\cdot)\) \(\chi_{7056}(6355,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.271776353216347717810469630450516372938858574109997048774397001728.1

Values on generators

\((6175,1765,785,4609)\) → \((-1,i,1,e\left(\frac{5}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 7056 }(4843, a) \) \(1\)\(1\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{13}{14}\right)\)\(-i\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{5}{28}\right)\)\(1\)\(e\left(\frac{19}{28}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7056 }(4843,a) \;\) at \(\;a = \) e.g. 2