Properties

Modulus $703$
Structure \(C_{18}\times C_{36}\)
Order $648$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(703)
 
pari: g = idealstar(,703,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 648
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{18}\times C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{703}(667,\cdot)$, $\chi_{703}(39,\cdot)$

First 32 of 648 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{703}(1,\cdot)\) 703.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{703}(2,\cdot)\) 703.ds 36 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(-1\)
\(\chi_{703}(3,\cdot)\) 703.cs 18 yes \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{703}(4,\cdot)\) 703.cx 18 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(-1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\)
\(\chi_{703}(5,\cdot)\) 703.dw 36 yes \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{703}(6,\cdot)\) 703.dg 36 yes \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{703}(7,\cdot)\) 703.bb 9 yes \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{703}(8,\cdot)\) 703.bj 12 yes \(1\) \(1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)
\(\chi_{703}(9,\cdot)\) 703.z 9 yes \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{703}(10,\cdot)\) 703.ck 18 yes \(-1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{703}(11,\cdot)\) 703.k 6 yes \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{703}(12,\cdot)\) 703.cb 18 yes \(-1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{703}(13,\cdot)\) 703.du 36 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(-i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(-1\)
\(\chi_{703}(14,\cdot)\) 703.df 36 yes \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{703}(15,\cdot)\) 703.db 36 yes \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{703}(16,\cdot)\) 703.w 9 yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(1\)
\(\chi_{703}(17,\cdot)\) 703.de 36 yes \(-1\) \(1\) \(-i\) \(e\left(\frac{5}{18}\right)\) \(-1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\)
\(\chi_{703}(18,\cdot)\) 703.dm 36 yes \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(-i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{703}(20,\cdot)\) 703.dk 36 no \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(-i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{703}(21,\cdot)\) 703.bt 18 yes \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(1\)
\(\chi_{703}(22,\cdot)\) 703.ds 36 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(-i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(-1\)
\(\chi_{703}(23,\cdot)\) 703.dp 36 yes \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{703}(24,\cdot)\) 703.da 36 yes \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(-1\) \(e\left(\frac{7}{18}\right)\) \(-i\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{703}(25,\cdot)\) 703.bw 18 yes \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{703}(26,\cdot)\) 703.g 3 yes \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)
\(\chi_{703}(27,\cdot)\) 703.m 6 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)
\(\chi_{703}(28,\cdot)\) 703.bw 18 yes \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{703}(29,\cdot)\) 703.df 36 yes \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{703}(30,\cdot)\) 703.cn 18 yes \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{703}(31,\cdot)\) 703.bl 12 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)
\(\chi_{703}(32,\cdot)\) 703.ds 36 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(-1\)
\(\chi_{703}(33,\cdot)\) 703.bv 18 yes \(-1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(-1\) \(e\left(\frac{8}{9}\right)\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{3}\right)\)
Click here to search among the remaining 616 characters.