sage: H = DirichletGroup(703)
pari: g = idealstar(,703,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 648 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{18}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{703}(667,\cdot)$, $\chi_{703}(39,\cdot)$ |
First 32 of 648 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{703}(1,\cdot)\) | 703.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{703}(2,\cdot)\) | 703.ds | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(i\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(-1\) |
\(\chi_{703}(3,\cdot)\) | 703.cs | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{703}(4,\cdot)\) | 703.cx | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(1\) |
\(\chi_{703}(5,\cdot)\) | 703.dw | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{703}(6,\cdot)\) | 703.dg | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{703}(7,\cdot)\) | 703.bb | 9 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{703}(8,\cdot)\) | 703.bj | 12 | yes | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
\(\chi_{703}(9,\cdot)\) | 703.z | 9 | yes | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{703}(10,\cdot)\) | 703.ck | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{703}(11,\cdot)\) | 703.k | 6 | yes | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
\(\chi_{703}(12,\cdot)\) | 703.cb | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{703}(13,\cdot)\) | 703.du | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-i\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(-1\) |
\(\chi_{703}(14,\cdot)\) | 703.df | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{703}(15,\cdot)\) | 703.db | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{703}(16,\cdot)\) | 703.w | 9 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(1\) |
\(\chi_{703}(17,\cdot)\) | 703.de | 36 | yes | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{18}\right)\) | \(-1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(i\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(-1\) |
\(\chi_{703}(18,\cdot)\) | 703.dm | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(-i\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{703}(20,\cdot)\) | 703.dk | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(-i\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{703}(21,\cdot)\) | 703.bt | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(1\) |
\(\chi_{703}(22,\cdot)\) | 703.ds | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(-i\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) |
\(\chi_{703}(23,\cdot)\) | 703.dp | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{703}(24,\cdot)\) | 703.da | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(-1\) | \(e\left(\frac{7}{18}\right)\) | \(-i\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{703}(25,\cdot)\) | 703.bw | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{703}(26,\cdot)\) | 703.g | 3 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |
\(\chi_{703}(27,\cdot)\) | 703.m | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) |
\(\chi_{703}(28,\cdot)\) | 703.bw | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{703}(29,\cdot)\) | 703.df | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{703}(30,\cdot)\) | 703.cn | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{703}(31,\cdot)\) | 703.bl | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) |
\(\chi_{703}(32,\cdot)\) | 703.ds | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(i\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(-1\) |
\(\chi_{703}(33,\cdot)\) | 703.bv | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) |