sage: H = DirichletGroup(700)
pari: g = idealstar(,700,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 240 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{60}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{700}(351,\cdot)$, $\chi_{700}(477,\cdot)$, $\chi_{700}(101,\cdot)$ |
First 32 of 240 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{700}(1,\cdot)\) | 700.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{700}(3,\cdot)\) | 700.bs | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{700}(9,\cdot)\) | 700.bo | 30 | no | \(1\) | \(1\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{700}(11,\cdot)\) | 700.bl | 30 | yes | \(-1\) | \(1\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{700}(13,\cdot)\) | 700.bh | 20 | no | \(1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{700}(17,\cdot)\) | 700.bv | 60 | no | \(1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) |
\(\chi_{700}(19,\cdot)\) | 700.bm | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) |
\(\chi_{700}(23,\cdot)\) | 700.bt | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{700}(27,\cdot)\) | 700.bk | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{700}(29,\cdot)\) | 700.y | 10 | no | \(1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{700}(31,\cdot)\) | 700.bq | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{700}(33,\cdot)\) | 700.bv | 60 | no | \(1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{30}\right)\) |
\(\chi_{700}(37,\cdot)\) | 700.bu | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{700}(39,\cdot)\) | 700.bp | 30 | yes | \(-1\) | \(1\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{700}(41,\cdot)\) | 700.z | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{700}(43,\cdot)\) | 700.k | 4 | no | \(1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) |
\(\chi_{700}(47,\cdot)\) | 700.bs | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{15}\right)\) |
\(\chi_{700}(51,\cdot)\) | 700.u | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{700}(53,\cdot)\) | 700.bu | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{700}(57,\cdot)\) | 700.l | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(1\) |
\(\chi_{700}(59,\cdot)\) | 700.bm | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{700}(61,\cdot)\) | 700.bn | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{700}(67,\cdot)\) | 700.bt | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) |
\(\chi_{700}(69,\cdot)\) | 700.v | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{700}(71,\cdot)\) | 700.bb | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{700}(73,\cdot)\) | 700.bv | 60 | no | \(1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{700}(79,\cdot)\) | 700.bp | 30 | yes | \(-1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{700}(81,\cdot)\) | 700.bg | 15 | no | \(1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{700}(83,\cdot)\) | 700.bk | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{700}(87,\cdot)\) | 700.bs | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{700}(89,\cdot)\) | 700.br | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{700}(93,\cdot)\) | 700.bd | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |