Properties

Label 70.43
Modulus $70$
Conductor $5$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([3,0]))
 
Copy content pari:[g,chi] = znchar(Mod(43,70))
 

Basic properties

Modulus: \(70\)
Conductor: \(5\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{5}(3,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 70.f

\(\chi_{70}(43,\cdot)\) \(\chi_{70}(57,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{5})\)

Values on generators

\((57,31)\) → \((-i,1)\)

Values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 70 }(43, a) \) \(-1\)\(1\)\(i\)\(-1\)\(1\)\(i\)\(-i\)\(-1\)\(i\)\(-i\)\(-1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 70 }(43,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 70 }(43,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 70 }(43,·),\chi_{ 70 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 70 }(43,·)) \;\) at \(\; a,b = \) e.g. 1,2