Properties

Label 693.95
Modulus $693$
Conductor $693$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(693, base_ring=CyclotomicField(30))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([25,20,21]))
 
pari: [g,chi] = znchar(Mod(95,693))
 

Basic properties

Modulus: \(693\)
Conductor: \(693\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 693.cx

\(\chi_{693}(2,\cdot)\) \(\chi_{693}(95,\cdot)\) \(\chi_{693}(128,\cdot)\) \(\chi_{693}(347,\cdot)\) \(\chi_{693}(380,\cdot)\) \(\chi_{693}(536,\cdot)\) \(\chi_{693}(569,\cdot)\) \(\chi_{693}(662,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((155,199,442)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{7}{10}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\(1\)\(1\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{1}{30}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.3090436055135317762211701171120211681132969992614273937990792412553.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 693 }(95,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{693}(95,\cdot)) = \sum_{r\in \Z/693\Z} \chi_{693}(95,r) e\left(\frac{2r}{693}\right) = -25.9550816532+4.3970144845i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 693 }(95,·),\chi_{ 693 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{693}(95,\cdot),\chi_{693}(1,\cdot)) = \sum_{r\in \Z/693\Z} \chi_{693}(95,r) \chi_{693}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 693 }(95,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{693}(95,·)) = \sum_{r \in \Z/693\Z} \chi_{693}(95,r) e\left(\frac{1 r + 2 r^{-1}}{693}\right) = 34.6452461622+-15.425057401i \)