sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(693, base_ring=CyclotomicField(30))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([20,10,18]))
pari: [g,chi] = znchar(Mod(394,693))
Basic properties
Modulus: | \(693\) | |
Conductor: | \(693\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(15\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 693.bx
\(\chi_{693}(4,\cdot)\) \(\chi_{693}(16,\cdot)\) \(\chi_{693}(130,\cdot)\) \(\chi_{693}(256,\cdot)\) \(\chi_{693}(268,\cdot)\) \(\chi_{693}(394,\cdot)\) \(\chi_{693}(445,\cdot)\) \(\chi_{693}(520,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 15.15.3091133177133909578645502426129.1 |
Values on generators
\((155,199,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right))\)
Values
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
\(1\) | \(1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{693}(394,\cdot)) = \sum_{r\in \Z/693\Z} \chi_{693}(394,r) e\left(\frac{2r}{693}\right) = 18.3702349987+-18.8556216045i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{693}(394,\cdot),\chi_{693}(1,\cdot)) = \sum_{r\in \Z/693\Z} \chi_{693}(394,r) \chi_{693}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{693}(394,·))
= \sum_{r \in \Z/693\Z}
\chi_{693}(394,r) e\left(\frac{1 r + 2 r^{-1}}{693}\right)
= -46.1571031501+9.8109951422i \)