Properties

Label 690.m
Modulus $690$
Conductor $23$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(690, base_ring=CyclotomicField(22))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,6]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(31,690))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(690\)
Conductor: \(23\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(11\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 23.c
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{23})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{690}(31,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{690}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{690}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{690}(211,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{690}(271,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{690}(301,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{690}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{690}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{690}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{690}(601,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{11}\right)\)