sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(690, base_ring=CyclotomicField(4))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([2,1,0]))
pari: [g,chi] = znchar(Mod(47,690))
Basic properties
Modulus: | \(690\) | |
Conductor: | \(15\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(4\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{15}(2,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 690.i
\(\chi_{690}(47,\cdot)\) \(\chi_{690}(323,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((461,277,511)\) → \((-1,i,1)\)
Values
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\(1\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(1\) | \(1\) | \(i\) | \(-1\) | \(-i\) |
Related number fields
Field of values: | \(\Q(\sqrt{-1}) \) |
Fixed field: | \(\Q(\zeta_{15})^+\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{690}(47,\cdot)) = \sum_{r\in \Z/690\Z} \chi_{690}(47,r) e\left(\frac{r}{345}\right) = -3.2945564142+-2.0361478418i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{690}(47,\cdot),\chi_{690}(1,\cdot)) = \sum_{r\in \Z/690\Z} \chi_{690}(47,r) \chi_{690}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{690}(47,·))
= \sum_{r \in \Z/690\Z}
\chi_{690}(47,r) e\left(\frac{1 r + 2 r^{-1}}{690}\right)
= -0.0 \)