Properties

Label 69.f
Modulus $69$
Conductor $23$
Order $22$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(69, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([0,19])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(7,69)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(69\)
Conductor: \(23\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 23.d
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{69}(7,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{69}(10,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{69}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{69}(28,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{69}(34,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{69}(37,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{69}(40,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{69}(43,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{69}(61,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{69}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{8}{11}\right)\)