from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(69, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,10]))
pari: [g,chi] = znchar(Mod(55,69))
Basic properties
Modulus: | \(69\) | |
Conductor: | \(23\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(11\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{23}(9,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 69.e
\(\chi_{69}(4,\cdot)\) \(\chi_{69}(13,\cdot)\) \(\chi_{69}(16,\cdot)\) \(\chi_{69}(25,\cdot)\) \(\chi_{69}(31,\cdot)\) \(\chi_{69}(49,\cdot)\) \(\chi_{69}(52,\cdot)\) \(\chi_{69}(55,\cdot)\) \(\chi_{69}(58,\cdot)\) \(\chi_{69}(64,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | \(\Q(\zeta_{23})^+\) |
Values on generators
\((47,28)\) → \((1,e\left(\frac{5}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 69 }(55, a) \) | \(1\) | \(1\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)