# Properties

 Label 684.617 Modulus $684$ Conductor $171$ Order $18$ Real no Primitive no Minimal yes Parity odd

# Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(684, base_ring=CyclotomicField(18))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,15,8]))

pari: [g,chi] = znchar(Mod(617,684))

## Basic properties

 Modulus: $$684$$ Conductor: $$171$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{171}(104,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 684.ck

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.0.2199538117867347115324617807105147.1

## Values on generators

$$(343,533,325)$$ → $$(1,e\left(\frac{5}{6}\right),e\left(\frac{4}{9}\right))$$

## Values

 $$a$$ $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$23$$ $$25$$ $$29$$ $$31$$ $$35$$ $$\chi_{ 684 }(617, a)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{18}\right)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{18}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 684 }(617,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 684 }(617,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 684 }(617,·),\chi_{ 684 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 684 }(617,·)) \;$$ at $$\; a,b =$$ e.g. 1,2