sage: H = DirichletGroup(684)
pari: g = idealstar(,684,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 216 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{6}\times C_{18}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{684}(343,\cdot)$, $\chi_{684}(533,\cdot)$, $\chi_{684}(325,\cdot)$ |
First 32 of 216 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{684}(1,\cdot)\) | 684.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{684}(5,\cdot)\) | 684.bw | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(1\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{684}(7,\cdot)\) | 684.x | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{684}(11,\cdot)\) | 684.o | 6 | yes | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{684}(13,\cdot)\) | 684.cj | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{684}(17,\cdot)\) | 684.by | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{684}(23,\cdot)\) | 684.bs | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{684}(25,\cdot)\) | 684.bp | 9 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{684}(29,\cdot)\) | 684.bv | 18 | no | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(-1\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{684}(31,\cdot)\) | 684.bn | 6 | yes | \(1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{684}(35,\cdot)\) | 684.ce | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{684}(37,\cdot)\) | 684.h | 2 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) |
\(\chi_{684}(41,\cdot)\) | 684.bv | 18 | no | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(-1\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{684}(43,\cdot)\) | 684.bu | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{684}(47,\cdot)\) | 684.ch | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(-1\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{684}(49,\cdot)\) | 684.j | 3 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{684}(53,\cdot)\) | 684.bz | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{684}(55,\cdot)\) | 684.cg | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{684}(59,\cdot)\) | 684.ci | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{684}(61,\cdot)\) | 684.bp | 9 | no | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{684}(65,\cdot)\) | 684.n | 6 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{684}(67,\cdot)\) | 684.bt | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{684}(71,\cdot)\) | 684.cd | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{684}(73,\cdot)\) | 684.bo | 9 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{684}(77,\cdot)\) | 684.bc | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{684}(79,\cdot)\) | 684.bt | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{684}(83,\cdot)\) | 684.bi | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{684}(85,\cdot)\) | 684.bq | 9 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{684}(89,\cdot)\) | 684.bz | 18 | no | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) |
\(\chi_{684}(91,\cdot)\) | 684.cf | 18 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{684}(97,\cdot)\) | 684.cj | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{684}(101,\cdot)\) | 684.bw | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(1\) | \(e\left(\frac{11}{18}\right)\) |