Properties

Label 6825.pa
Modulus $6825$
Conductor $6825$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6825, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([30,39,30,35])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(167,6825)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6825\)
Conductor: \(6825\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(16\) \(17\) \(19\) \(22\) \(23\) \(29\)
\(\chi_{6825}(167,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{6825}(188,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{6825}(1112,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{6825}(1133,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{6825}(1553,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{6825}(2477,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{6825}(2498,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{6825}(2897,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{6825}(3842,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{6825}(3863,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{6825}(4262,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{6825}(4283,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{6825}(5228,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{6825}(5627,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{6825}(5648,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{6825}(6572,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{13}{15}\right)\)