Properties

Label 6825.nx
Modulus $6825$
Conductor $2275$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6825, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([0,21,30,20])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(328,6825)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6825\)
Conductor: \(2275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2275.gp
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(16\) \(17\) \(19\) \(22\) \(23\) \(29\)
\(\chi_{6825}(328,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{1}{30}\right)\)
\(\chi_{6825}(412,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{6825}(958,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{29}{30}\right)\)
\(\chi_{6825}(1147,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{1}{30}\right)\)
\(\chi_{6825}(1777,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{6825}(2323,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{6825}(2512,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{7}{30}\right)\)
\(\chi_{6825}(3058,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{6825}(3142,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{29}{30}\right)\)
\(\chi_{6825}(3688,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{6825}(3877,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{13}{30}\right)\)
\(\chi_{6825}(4423,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{13}{30}\right)\)
\(\chi_{6825}(5053,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{6825}(5242,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{6825}(5788,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{7}{30}\right)\)
\(\chi_{6825}(5872,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{11}{30}\right)\)